Document Scope

This document describes the installation and programming of the following products:

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Item No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Master Clock 70000</td>
<td>3005050028</td>
</tr>
<tr>
<td>Marine Master Clock 70000L with Network Time Server</td>
<td>3005050029</td>
</tr>
</tbody>
</table>

Revision Information

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>26.05.2013</td>
<td>SEN</td>
<td>Final</td>
</tr>
<tr>
<td>V1.1</td>
<td>13.04.2013</td>
<td>SEN</td>
<td>Updated 1717en13 to 1717en16</td>
</tr>
<tr>
<td>V1.2</td>
<td>25.07.2013</td>
<td>SEN</td>
<td>Added doc.A100K11451 cable calculation. New rev. of cable connection diagram A100K10836</td>
</tr>
<tr>
<td>V1.3</td>
<td>16.06.2015</td>
<td>SEN</td>
<td>Masterclock; Protection changed to IP-22, page 8</td>
</tr>
<tr>
<td>V1.4</td>
<td>25.11.2015</td>
<td>SEN</td>
<td>Updated cable connection diagram A100K10836</td>
</tr>
<tr>
<td>V1.5</td>
<td>12.05.2016</td>
<td>SEN</td>
<td>Updated cable connection diagram A100K10836</td>
</tr>
<tr>
<td>V1.6</td>
<td>24.08.2016</td>
<td>SEN</td>
<td>Updated A100K10836, changes on term.block 6</td>
</tr>
<tr>
<td>V1.7</td>
<td>13.11.2018</td>
<td>HKL</td>
<td>New manual versions 1717en19 - 1795en03 - 9539en14</td>
</tr>
<tr>
<td>V1.8</td>
<td>17.6.2019</td>
<td>HKL</td>
<td>Power supply 50/60 Hz</td>
</tr>
</tbody>
</table>

Related Documentation

For further information, refer to the following documentation:

<table>
<thead>
<tr>
<th>Doc.no.</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A100K10836 Rev.02</td>
<td>Autocad dwg cable connection diagram</td>
</tr>
<tr>
<td>A100K10838</td>
<td>Autocad dwg dimension drawing 70000 & 70000L</td>
</tr>
</tbody>
</table>

Note: Autocad drawings and datasheets are available for all slave clocks
Contents

1. User Manual Marine Master Clock
 Document: 1717en19.doc
 Date: 2017-12-22
 51 Pages

2. Technical Manual Wired DCF Time Code-Clock
 Document: 1785en03.doc
 Date: 2009-11-04
 5 pages

3. Option Ethernet Marine Master Clock
 Document: 1795en03
 Date: 2014-05-08
 11 Pages

4. Technical Specification Marine Master Clock
 Document: 9539en14
 Date: 2018-08-15
 5 Pages

5. Cable Connection
 • Cable Connection Diagram
 Document: A100K10836 (1 Page)
 • Cable Calculation
 Document: A100K11451 (1 Page)
 • Dimensions Drawing
 Document: A100K10838 (1 Page)
List of contents

TECHNICAL SPECIFICATIONS .. 4
 GENERAL ... 4
 SLAVE CLOCK OUTPUT .. 4
 RELAY OUTPUT ... 4
 ALARM OUTPUT .. 4

GENERAL DESCRIPTION .. 5

FRONT PANEL DESCRIPTION ... 5
 KEYBOARD .. 6
 RELAY OUTPUT CONTROL SWITCHES ... 6
 STATUS MONITORING LED:s .. 6
 OUTPUT LINE MONITORING LED:s ... 6

INSTALLATION ... 7

PROGRAMMING .. 8
 GENERAL ... 8
 RUNNING MODE ... 8
 START UP PROCEDURE .. 9
 1. Start up questions (this page) ... 9
 2. Output configuration / Setup (page 10) ... 9
 3. Enter time of Slave Clocks (page 12) ... 9
 OUTPUT CONFIGURATION / SETUP ... 10
 SET UTC WHEN IN OPERATION .. 11
 SET LOCAL TIME WHEN IN OPERATION ... 11
 SLAVE CLOCK .. 12
 TIME ZONE ADJUSTMENT .. 13
 ALARMS ... 14
 Example 1, display alarms ... 14
 Example 1, erase alarms .. 15
 Alarm list ... 16
 WEEK PROGRAM & DATE PROGRAM .. 17
 Concept description .. 17
 Week Program, example 1 (New program) .. 19
 Week Program, example 2 (Change program) ... 20
 Week Program, example 3 (Erase program) ... 21
 Week Program, example 4 (Astronomical function) .. 22
 Week Program, example 5 (Block program) ... 23
 Week Program, example 6 (Mask program) ... 24
 Date Program, example (New program) ... 25
 DISPLAY PROGRAM .. 26
 TEMPORARY PROGRAM, EXAMPLE ... 27
 GROUP => PERIOD .. 28
 SPEC.-FUNCTIONS ... 29
 SPEC.-FUNCTIONS ... 29
 Status ... 30
 Language ... 32
 Setup .. 33
 Software version .. 45
Default LT adjust .. 46
Display format ... 47

PROGRAMMING FORM ... 48

FAULT TRACING .. 49

ALARM OUTPUT ... 50
Technical specifications

General
Crystal Frequency: 4,915200 MHz.
Accuracy: 0,1 sec./24 hours (at +20°C).
Microprocessor: HD6412394.
Connection voltage: 90 - 264V 50/60 Hz and 24 V DC -5% +20 %.
Max ripple (24V DC): 0,7V RMS.
Power consumption: 65 W (max)
Ambient temperature: Between 0° C and +50°C.
Relative humidity: Max. 85% non-condensing.
IP rating: IP20
Weight: 5.6 kg.
CE-Approval, EMC: Emission acc. to EN61000-6-3, Immunity acc. to EN61000-6-2.

Slave Clock output
Output 1, 2 and 3:
Impulse system: 1/1 minute, 1/2 minute, second, Time Code (TC)
Type of time: LT, UTC
Impulse length: Minute 0.1-9.9 sec.
Second 0.1-1 sec.
Output 4:
Impulse system: 2-wire: 1/1 minute, 1/2 minute, second, Time Code (TC).
3-wire for Forward/Reverse movement: 1/1-minute alt. 1/2-minut.
Type of time: LT, UTC
Impulse duration: Minute 0.1-9.9 sec.
Second 0.1-1 sec.
Maximum load / output: 2A (The output is equipped with short circuit protection that resets automatically.
Total load all outputs: 2.5A

Relay output
Relay outputs: 2 closing potential-free contacts.
Max. load/relay output: 24 V 6A.
Total load relay outputs: 12A
Program memory: 100 years (EEPROM)
Number of control functions: 800.

Alarm output
Number of outputs: 2 Changeover potential-free contacts.
Type of alarms
Output no. 1 (general alarm): Overload / short circuit, synchronisation alarm
Output no. 2 (power alarm): Power failure alarm
General description

Westerstrand Marine Master Clock is the ideal solution for distribution of both Local and UTC time on board ships.

The Master Clock is equipped with several outputs and inputs for control of Slave Clocks as well as distribution of time to computers and other equipment needing correct time. The four Slave Clock outputs can be individually programmed for different types of clocks. External radio receivers / time synchronisation sources can be connected when higher accuracy is needed.

For control and regulation of various energy consumers such as electrical striking plates, buzzers for pause signalling etc, the master Clock has a built in yearly programmer with two relay outputs.

The Master Clock is equipped with 10 buttons and a 2 x 16 character LCD. To facilitate the change of time zone two of the buttons are dedicated for this purpose. A light dimmer makes it possible to adjust the background illumination to the surrounding light level.

The front mounted power switch is an all pole switch and controls both AC and DC power.

Position IN = Power ON.
Position OUT = Power OFF.

Front panel description
Keyboard
LIGHT+ Increase LED backlight level
LIGHT- Decrease LED backlight level
↑↓ Select function / Change and scroll
← Move left / Cancel / Leave programming mode
→ Move right
NO Decline
YES Accept / Enter programming mode
ADV. Advance Local Time
REV. Reverse Local Time

Relay output control switches
1 Always ON
0 Always OFF
A Automatic position, ON/OFF according to program.

Status monitoring LED:s
Alarm An alarm has occurred, for instance short circuit on one of the output lines.
Power Power is ON.
Radio Indicating signal coming from an external radio receiver.
Link Indicating Ethernet LAN connection. (option)

Output line monitoring LED:s
Output line no. 1
Output line no. 2
Output line no. 3
Output line no. 4
Installation

The Marine Master Clock is intended for stand, cabinet, wall or desk mounting.

1. Mount the Master Clock.
2. Make sure that all analogue slave clocks shows the same time, for instance 12.00.
3. Before connecting the slave clock lines, check the wires for short circuit, faulty connections etc.
4. Connect the slave clock lines.
6. Connect the signal line/lines (to relay contacts).
7. NOTE! For connection of signals etc., mixed voltages must not be used. Therefore, choose either 230VAC or, for example 24VAC for connection to the relays.
8. Connect, if included, other accessories/options such as radio synchronisation, RS232 etc.
9. Connect the supply voltage and press the power switch.
Programming

General
Using 6 buttons and a 2-row 16-character display carries out all programming. Programming is self-instructive and to simplify the dialogue Yes/No questions are used.

Running mode
When the Time Base module is in operation it shows date and time in the display. This is called running mode in this documentation.

1- Select function ↑↓
2- Enter programming mode YES
3- Move sideways ←→
4- Change/scroll ↑↓
5- Accept YES
6- Cancel / Leave prog. mode ←
Start up procedure

1. Start up questions (this page)

2. Output configuration / Setup (page 10)

3. Enter time of Slave Clocks (page 12)

STARTING

LANGUAGE
ENGLISH?

SET UTC
160926 10:11:00

SET LT
160926 12:11:00

MON 26 SEP 2016
U10:11:35 L12:11

When the Master Clock is connected for the first time correct/requested language has to be entered. Press NO until requested language occurs in the display e.g. English. Accept with YES.

Set, by using the arrows, the right UTC.
Time format: Year, month, date, hour, minute, second.
Set the time a minute in advance.
Wait for the right time and synchronise using YES.

Set, by using the arrows, the right Local Time.
Time format: Year, month, date, hour, minute, second.
Set the time a minute in advance.
Wait for the right time and synchronise using YES.

The Master Clock is now in running mode.
Output configuration / Setup

Each output can be individually configured regarding different parameters. The setup is done from the special function Setup. If the default setup is used no configuration is needed.

Default setup:

Slave Clock output no. 1
Impulse system: 1/1 minute
Type of time: UTC
Impulse length: 2 sec.

Slave Clock output no. 2
Impulse system:
Type of time:
Impulse length:

Slave Clock output no. 3
Impulse system:
Type of time:
Impulse length:

Slave Clock output no. 4
Impulse system: 3-wire for Forward/Reverse, 1/1-minute.
Type of time: Local Time
Impulse length: 2 sec.

Synchronisation source
NMEA RS485 (NMEA 0183ZDA Time string)

RS232 output
NMSE (NMEA 0183ZDA Time string)

RS485 output
NMSE (NMEA 0183ZDA Time string)
Set UTC when in operation

Select function using ↓.

Enter the programming mode with YES.

Set, by using the arrows, the right UTC.

Set the time a minute in advance.

Wait for the right time and synchronise using YES.

Leave programming mode by pressing ← several times.

The master clock is now back in running mode.

Set Local Time when in operation

Remark: To do normal Time Zone adjustments use the buttons, ADV and REV.

Select function using ↓.

Enter the programming mode with YES.

Set, by using the arrows, the right Local Time.

Set the time a minute in advance.

Wait for the right time and synchronise using YES.

Leave programming mode by pressing ← several times.

The master clock is now back in running mode.
Slave Clock

Select function using ↓.

Enter the programming mode with YES.

Select output using ↑↓. Accept with YES.

IMPULSE OUTPUT 1 = 09:07? (Example)
If the slave clocks connected to impulse output 1 shows 09:07 answer YES, if not, set the time shown by the slave clocks.

Turn ON impulse output 1 by using ↑↓.

Accept with YES

Leave programming mode by pressing ← several times.

The master clock is now back in running mode.

NOTE! If a slave clock runs out by a minute, its cabling must be pole changed and the slave clock to be corrected manually.

NOTE! If the time of the slave clocks is ahead of correct/present time the Master Clock will wait until correct time corresponds with the slave clocks.
Time zone adjustment

To change Local Time zone two buttons are used. The buttons are named ADV and REV. To advance the Local Time slave clocks to a new time zone press button ADV.

Example:

| MON 26 SEP 2016 | Press button ADV. |
| U10:11:35 L12:11 |

| LOCAL TIME ADJ. | Use the default value or change by pressing ADV. |
| 60m ? | Accept with YES. |

| LOCAL TIME ADJ. ! |
| The Local Time slave clocks will now advance 60 minutes. |

| MON 26 SEP 2016 | When the correction is finished the display is automatically returned to running mode. |
| U10:11:35 L13:11 |

To reverse the Local Time slave clocks to a new time zone press button REV.

Example:

| MON 26 SEP 2016 | Press button REV. |
| U10:11:35 L12:11 |

| LOCAL TIME ADJ. | Use the default value or change by pressing REV. |
| - 60m ? | Accept with YES. |

| LOCAL TIME ADJ. ! |
| The Local Time slave clocks will now be adjusted as below: |
| 1 Min forward clock’s stop 60 min |
| 0,5 Min F/B clock’s: Reverse 60 Min |
| TC Clock’s: 11 hours forward |

| MON 26 SEP 2016 | When the correction is finished the display is automatically returned to running mode. |
| U10:11:35 L11:11 |

Remark: To interrupt a time zone adjustment in progress press button ← and YES.
Alarms

This function is used to display and erase the different alarms in the master clock.

<table>
<thead>
<tr>
<th>ALARMS- DISPLAY</th>
<th>To show the alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARMS- ERASE</td>
<td>To erase the alarms</td>
</tr>
</tbody>
</table>

Example 1, display alarms

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARMS</td>
<td>Accept with YES.</td>
</tr>
<tr>
<td>ALARMS- DISPLAY</td>
<td>Press NO until the wished function is shown. Accept with YES.</td>
</tr>
<tr>
<td>09AUG 15:52 NO RADIO 30</td>
<td>The alarm is displayed.</td>
</tr>
<tr>
<td></td>
<td>Press ↑↓ to see next alarm.</td>
</tr>
<tr>
<td></td>
<td>Return to running mode press ←.</td>
</tr>
<tr>
<td>ALARMS- DISPLAY</td>
<td>←.</td>
</tr>
<tr>
<td>ALARMS</td>
<td>←.</td>
</tr>
<tr>
<td>MON 26 SEP 2016 U10:11:35 L12:11</td>
<td></td>
</tr>
</tbody>
</table>
Example 1, erase alarms

Select function using ↑↓.

Accept with YES.

Press NO until the wished function is shown.
Accept with YES.

The alarm is displayed.
Press YES to erase the alarm.

Accept with YES.

Return to running mode press ←.
Alarm list

The following alarms are available

<table>
<thead>
<tr>
<th>Type of alarm</th>
<th>Alarm code</th>
<th>Indication</th>
<th>Reason for alarm</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO RADIO</td>
<td>30</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>The Master Clock has not been synchronised within the alarm limit.</td>
<td>Check the external synchronisation source. If no external source is used inactivate the alarm. See special function/setup sync. source page 36.</td>
</tr>
<tr>
<td>UF LOW</td>
<td>52</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse voltage below alarm limit.</td>
<td>Remove connected clocks and clear the alarm. If OK, check clocks and wiring.</td>
</tr>
<tr>
<td>CURRENT LOW</td>
<td>61</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 1 is below alarm limit.</td>
<td>Check output connections. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT LOW</td>
<td>62</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 2 is below alarm limit.</td>
<td>Check output connections. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT LOW</td>
<td>63</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 3 is below alarm limit.</td>
<td>Check output connections. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT LOW</td>
<td>64</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 4 is below alarm limit.</td>
<td>Check output connections. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT HIGH</td>
<td>71</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 1 is above alarm limit.</td>
<td>Check output load. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT HIGH</td>
<td>72</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 2 is above alarm limit.</td>
<td>Check output load. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT HIGH</td>
<td>73</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 3 is above alarm limit.</td>
<td>Check output load. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT HIGH</td>
<td>74</td>
<td>Red alarm LED lit. General alarm relay activated.</td>
<td>Impulse current on output no. 4 is above alarm limit.</td>
<td>Check output load. If OK, clear the alarm.</td>
</tr>
<tr>
<td>CURRENT HIGH</td>
<td>75</td>
<td>Red alarm LED lit. General alarm relay activated. (Remark: Alarm 75 is only used in a 3-wire Forward/Reverse system.)</td>
<td>Impulse current on output no. 4 is above alarm limit.</td>
<td>Check output load. If OK, clear the alarm.</td>
</tr>
</tbody>
</table>
Week Program & Date Program

Using these two functions, programming of the outputs is made.

Concept description

Program
A "program" refers to programming an output to a certain time. The word program represents a single time event and several programs are defined as a *group of programs.*

For example: output 2 switches on every working day (Monday-Friday) at 8.00.

Week program
A week program is a program, which is repeated every week. You can for each program choose for which days of the week it shall be valid:

- Individual or block programming.
- M = Monday
- T = Tuesday
- W = Wednesday
- T = Thursday
- F = Friday
- S = Saturday
- S = Sunday

Date program
A date program is a program, which is valid for a specific date.

Group
A group of programs, signal events.

Type of signals
There are some different kinds of signals, depending on how the relay output is to be used.

ON/OFF
Is used when a longer lasting switching ON is required, e.g. for controlling fans, door locks, lighting etc.

01s
Is used when a short pulse is required, e.g. for bells/buzzers. Pulse duration selectable from 1-99 seconds.

Astr.
Astr. (Twilight) is a function which closes.opens a predestined relay at sunrise resp. sunset. Which day and month of the year it is, and where the Time Central programmer is located geographically, define the time of the sunrise resp. sunset. The sunrise resp. sunset are calculated in the software of the Y8 module. The geographic position of the Time Central is entered at starting up. A map indicating latitude (°north) and longitude (°east) is enclosed.

Mask
A program that is repeated f. ex every hour is easily entered by the use of mask program.

XX.15.00 ; the program is repeated every hour at minute 15.
08.XX.00 ; the program is repeated every minute between 08.00 and 09.00.
XX.XX.00 ; The program is repeated every minute.
To simplify programming 3 sub menus are used:

- **NEW** GROUP A
 - To enter new programs.
- **ERASE** GROUP A
 - To erase a separate existing program.
- **CHANGE** GROUP A
 - To change existing programs.
Week Program, example 1 (New program)

Example: Outputs No. 2 shall switch on Monday – Friday at 09.00 and off at 17.00.

Select function using ↑↓.

Enter programming mode using YES.

Select new program using YES.

Select group of programs using ↑↓, accept using YES.

Select output using ↑↓. Move to the right using →.

State type of signal using ↑↓.

State the days the program shall function using ↑↓.
Move to the right using →.

State the time of the program using ↑↓.
Move to the right using →.
Accept using YES.
If the program is approved the text “Program saved” is displayed quickly.

Continue with programming OFF for the same output or leave programming by pressing ← several times.
Week Program, example 2 (Change program)

Example: A signal on output 1, Monday – Friday at 08.00, shall be changed to 08.15. Signal length is 5 seconds.

- Select function using ↑↓.
- Enter programming mode using YES.
- Select change program using YES.
- Select group of programs using ↑↓, accept using YES.
- Select output using ↑↓. Move to the right using →.
- Step forward to the program, which is to be changed using NO and YES.
- Change the time to 09.15 using the arrows. Accept using YES.
- Leave the programming by pressing ← several times.
Week Program, example 3 (Erase program)

Example: A signal on output 1, Fridays at 16.30 shall be deleted. Signal length is 5 seconds.

Select function using ↑↓.

Enter programming mode using YES.

Select erase program using YES.

Select group of programs using ↑↓, accept using YES.

Select output using ↑↓. Move to the right using →.

Step forward to the program that is to be erased using NO and YES. Accept using YES.

Leave the programming by pressing ← several times.
Week Program, example 4 (Astronomical function)

Example: Output No. 1 shall switch ON all sunset All days and switch OFF at sunrise.

<table>
<thead>
<tr>
<th>MON 26 SEP 2016</th>
<th>Select function using ↑↓.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U10:11:00 L12:11</td>
<td>Enter programming mode using YES.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK PROGRAM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WEEK PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW GROUP A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT 2 ON</th>
<th>Select output using ↑↓. Move to the right using →.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTWTF-- 08:00:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT 2 ASTR</th>
<th>State type of signal using ↑↓.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTWTF--</td>
<td>State the days the program shall function using ↑↓. Accept using YES.</td>
</tr>
<tr>
<td></td>
<td>If the program is approved the text “Program saved” is displayed quickly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK PROGRAM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MON 26 SEP 2016</th>
<th>Leave the programming by pressing ← several times.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U10:11:00 L12:11</td>
<td></td>
</tr>
</tbody>
</table>
Week Program, example 5 (Block program)

Example: Outputs No. 2 shall switch on Monday, Wednesday and Friday at 09.00.

Select function using ↑↓.

Enter programming mode using YES.

Select new program using YES.

Select group of programs using ↑↓, accept using YES.

Select output using ↑↓. Move to the right using →.

State type of signal using ↑↓.

State the days the program shall function using ↑↓. Move to the right using →.

State the time of the program using ↑↓. Move to the right using →. Accept using YES.

If the program is approved the text “Program saved” is displayed quickly.

Continue with programming OFF for the same output or leave programming by pressing ← several times.
Week Program, example 6 (Mask program)

Example: Outputs No. 2 shall switch on for 5 seconds every hour at minute 15, all days in the week.

```
MON  26 SEP 2016
U10:11:00 L12:11
```
Select function using ↑↓.

```
WEEK PROGRAM
```
Enter programming mode using YES.

```
WEEK PROGRAM
NEW GROUP A
```
Select new program using YES.

```
WEEK PROGRAM
NEW GROUP A
```
Select group of programs using ↑↓, accept using YES.

```
OUTPUT 2 ON
------- 08:00:00
```
Select output using ↑↓. Move to the right using →.

```
OUTPUT 2 05S
------- 08:00:00
```
State type of signal using ↑↓.

05S = Pulse with 5 seconds length.

```
OUTPUT 2 05S
MTWFSS 08:00:00
```
State the days the program shall function using ↑↓.

Move to the right using →.

```
OUTPUT 2 05S
MTWFSS **:15:00
```
State the time of the program using ↑↓. ** = every hour.

Move to the right using →.

Accept using YES.

If the program is approved the text “Program saved” is displayed quickly.

```
WEEK PROGRAM
```
Leave programming by pressing ← several times.

```
MON  26 SEP 2016
U10:11:00 L12:11
```

Date Program, example (New program)

Example: Outputs No. 1 shall switch on the 1st of August at 12.00.

Select function using ↑↓.

Enter programming mode using YES.

Select new program using YES.

Select output using ↑↓. Move to the right using →.

State type of signal using ↑↓.

State the date the program shall function using ↑↓. Move to the right using →.

State the time of the program using ↑↓. Move to the right using →. Accept using YES. If the program is approved the text “Program saved” is displayed quickly.

Continue with programming OFF for the same output or leave programming by pressing ← several times.
Display Program

Select function using ↑↓.

Enter display program using YES.

Select program group using ↑↓, accept with YES.

Select output to be displayed using ↑↓, accept with YES.

Step forwards alt. Backwards using ↑↓.

Leave the function display program by pressing ← several times.
Temporary Program, example

Example: Outputs No. 2 shall switch on immediately 15.35.00 and turn off according to normal week program. The temporary program will automatically be erased when the event has been effected.

- **Select function using ↑↓.**
- **Enter programming mode using YES.**
- **Select output using ↑↓. Move to the right using →.**
- **State type of signal using ↑↓. Accept using YES**
- **Accept using YES or change the time of the program using ↑↓.**
- **Leave the programming by pressing “ several times.**
Group => Period

Each program group can be associated to one or several time periods. A time period can consist of one or several dates. Maximum 99 time periods can be used. Program group A is as default associated to a time period covering the complete year, 1/1-31/12.

Example:
A school has one group of programs that are used during the school season and another used during school holidays. School season = Group A, School holidays = Group B.

The school holidays are at the following dates: 1/5, 10/6-15/8, 23/9 and so on...

Select function using ↑↓.

Enter programming mode using YES.

Select group of programs using ↑↓, accept using YES.

State the date when the period shall begin.
Move to the right using →.

State the date when the period shall end.
Accept with Yes.

Continue with next time period.

Accept with YES.

Continue with next time period or leave programming by pressing ← several times.
Spec.-Functions

The special functions contain functions used during setup and configuration of the Master Clock. If the default settings are used no configuration is needed.

- **SPEC.-FUNCTIONS**: Accept with YES.
- **SPEC.-FUNCTIONS STATUS**: Press NO until wished function is shown. Accept with YES.
- **STATUS**: Show status information of the different output/input in the Master Clock.
- **LANGUAGE**: Language selection.
- **SETUP**: Setup/configuration of the different impulse system, type of synchronisation etc.
- **DISPLAY FORMAT**: Display format in running mode.
- **SOFTWARE VERSION**: Present software version.
- **DEFAULT LT ADJ.**: Default value used when pressing button ADV or REV.
- **SPEC.-FUNCTIONS STATUS**: Return to running mode press ←.

MON 26 SEP 2016 U10:11:35 L12:11
Status

With this function each input/output status can be checked.

Example:
Check the status of the synchronisation source receiver.

Select function using ↓.
Accept with YES.
Press NO until wished function is shown.
Accept with YES.
Press NO until wished input/output is shown.
Accept with YES.
The Master Clock has accepted 60% of the synchronisation messages.
Last reception was 14/10 19:59:00.
Return to running mode press ←.
←
←
Status sync. source

*Remark: For W-GPS the marked position always shows the actual second. This information is updated every other second.

Status impulse output
Language

With this function the language be selected.

Example:

```
MON  26 SEP 2016
U10:11:35   L12:11

Select function using ↓.

SPEC.-FUNCTIONS

Accept with YES.

SPEC.-FUNCTIONS
LANGUAGE

Press NO until wished function is shown.

SPEC.-FUNCTIONS
LANGUAGE

Accept with YES.

LANGUAGE
ENGLISH?

Select, by using the arrows, the wished language.
Accept with YES.

SPEC.-FUNCTIONS
LANGUAGE

Return to running mode press ←.

MON  26 SEP 2016
U10:11:35   L12:11
```
Setup

With this function the different output and input can be configured. If the default setup is used no configuration is needed.

Example:
Set the alarm limit for *synchronisation source alarm* to 1 hour. (Default setting is 12 hours.)

- Select function using ↓.
- Accept with YES.
- Press NO until wished function is shown.
- Accept with YES.
- Press NO until wished input/output is shown.
- Accept with YES.
- Set, by using the arrows, the alarm limit to 1 hour (01h).
- Return to running mode press ←.
Setup sync. source

Below is a description of the different configuration parameters available in the setup menu for sync. source. Please remark that if default settings are used no configuration is needed.

Type of synchronisation
State type of external synchronisation. The following time sources can be selected:

- NMEA RS485 (default) Synchronisation using RS485 input and NMEA ZDA protocol.
- NMEA RS232 Synchronisation using RS232 input and NMEA ZDA protocol.
- W-GPS Radio synchronisation GPS type Westerstrand.
- DCF77 Radio synchronisation DCF77.
- TC Time code type hard wired DC
- ------- No external synchronisation

Alarm limit
The configuration parameter Alarm limit specifies the time delay before the radio alarm is activated. Default setting is that the radio alarm is inactivated, AL.LIMIT --h--m.
Setup impulse output

Below is a description of the different configuration parameters available in the setup menu for impulse output. Please remark that if default settings are used no configuration is needed.

Impulse type

Selection of impulse type. The following types are available.

- 1/1M-24H: Polarised 1/1-minute impulse with 24 hours resetting.
- 1/1M-12H: Polarised 1/1-minute impulse with 12 hours resetting.
- 1/2M-24H: Polarised 1/2-minute impulse with 24 hours resetting.
- 1/2M-12H: Polarised 1/2-minute impulse with 12 hours resetting.
- SEC-12H: Polarised Second impulses with 12 hours resetting.
- SEC-60S: Polarised Second impulses with 60 seconds resetting.
- 1/2-SEC: Polarised Second impulses with 60 seconds resetting.
- TCmarine: Time Code marine
- TC-ext: Time Code marine for TC-Clocks diameter 600-900 mm.
- FW/RW: 3-wire for Forward/Reverse, 1/1-minute.
- FW/RW1/2: 3-wire for Forward/Reverse, 1/2-minute.
- 1/1M-SS: Polarised 1/1-minute impulse for analogue clocks with sweeping second hand.
 (2 seconds pulse length in normal mode and 0.5 seconds during correction)
- 1/2M-12B: Clock signal to Telegraph Logger
- -----------: No impulse system.

Type of time

LT = Local Time.
UTC = Universal Time Coordinated.
Impulse length
Configuration of impulse length.

1/1 and 1/2-minute impulse: 0.1s – 9.9 s.
Second impulses: 0.1 – 1.0 s.

Alarm limits

Impulse current low limit
Alarm limit for low current (minimum load). The minimum load can be set from 0A up to 2.0A.

Impulse current high limit
Alarm limit for high current (maximum load). The maximum load can be set from 0A up to 2.0A.

Impulse feedback voltage limit
Alarm limit for feedback impulse voltage.

IL=0.0 – 2.0A
UF= -- V

-- : No limit (default).
01 - 99 : Limit in volts, V.
Setup RS232 and RS485/422 output / input

Below is a description of the different configuration parameters available in the setup menu for the **RS232 and RS485 input/output**.

Please remark that if default settings are used no configuration is needed. The RS485/422 input protocol is always fixed to NMEA ZDA Time string and cannot be changed.

Type of protocol
Name of the transmission / reception protocol used in the module. The following protocols are available.

NMEA output from Master Clock
- **NMIM:** NMEA 0183, ZDA Time string, minute update, without hundreds of seconds
- **NMSE:** NMEA 0183, ZDA Time string, second update, without hundreds of seconds
- **NMMC:** NMEA 0183, ZDA Time string, minute update, with hundreds of seconds
- **NMSC:** NMEA 0183, ZDA Time string, second update, with hundreds of seconds
- **NMin:** NMEA 0183, ZDA Time string, (input to Master Clock)

Other protocols
- **1:** General 2-way-communication protocol.
- **2, 3, 5, 7, 16 etc.:** Automatic time message protocols.

Type of time
Type of time received or transmitted.
- **LT:** Local Time.
- **UTC:** Universal Time Coordinated.

Baudrate
Available speeds: 300, 600, 1200, 2400, 4800, 9600 baud.

Data format
Data format of message received or transmitted.
- No. of data bits, 7 or 8.
- Type of parity, none, odd or even.
No. of stop bits, 1 or 2.

Available formats:
7N1, 7N2, 7O1, 7O2, 7E1, 7E2, 8N1, 8N2, 8O1, 8O2, 8E1, 8E2,

Protocol description

ZDA - Time & Date - UTC, Day, Month, Year and Local Time Zone

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

$--ZDA,hhmmss.ss,xx,xx,xxxx,xx,xx*hh<CR><LF>

Field Number:
1) Universal Time Coordinated (UTC)
2) Day, 01 to 31
3) Month, 01 to 12
4) Year
5) Local zone description, 00 to +- 13 hours
6) Local zone minutes description, same sign as local hours
7) Checksum
Protocol 2

The message has length 20 bytes according to:

STX F G W 20 YY MM DD HH MM SS ETX BCC

F - Flag bits
7 =0
6 =1
5 =0
4 =0 Winter time, =1 summer time
3 =1 Synced from Radio source, e.g. DCF77
2 =1 Synched from timeserver

1 0 Type of time
OFF OFF UTC
OFF ON LOC
ON OFF NOR

Example:
Assume wintertime time, synched from radio source, synchronized from timeserver, local time:
Bits 6, 3, 2 and 0 are set: 0100 1101 = 4Dh = 'M'

G - UTC offset during wintertime from letter 'P' in 1/2 hour steps.
Example:
Germany 2 x 1/2 = 1 hour, so 'P'+2 = 'R'

W Weekday '1' Monday .. '7' Sunday
YY Year '00'..'99'
MM Month '01'..'12'
DD Day of month '01'..'31'
HH Hour '00'..'23'
MM Minute '00'..'59'
SS Second '00'..'59'
ETX 03h
BCC Exclusive or of bytes F..ETX

The message is transmitted each second
Protocol 3
At second 56 this message will be transmitted:

HH:MM:00 SP DD/MN/YY SP NNN SP W CR LF (25 bytes)

HH = Hour ‘00’ – ‘23’.
: = 3AH
MM = Minute ‘00’ – ‘59’.
SP = Blank 20H.
DD = Date ‘01’ – ‘31’.
/ = 2FH
MN = Month ‘01’ – ‘12’.
YY = Year ‘00’ – ‘99’.
NNN = Daynumber ‘001’ – ‘365’ (3 bytes).
W = Weekday ‘1’ – ‘7’.
CR = 0DH.
LF = 0AH.

At second 60 (0) a synchronisation sign SUB (1AH) is transmitted.

Remark: The message transmitted at second 56 is next minute.
Example:
At 09:07:56 is a message transmitted. The time included in this message will be 09:08:00.

Protocol 5

T = T
: = 3AH
YY = Year 00....99
MN = Month 01....12
DD = Day 01....31
WW = Day of week 01....07
HH = Hour 00....23
mm = Minutes 00....59
ss = Seconds 00....59
CR = Carrige return 0Dh.
LF = Line feed 0Ah.

The time message is sent out each minute or each second.
Protocol 7

STX WW VV YYYY MN DD HH MM SS F G BCC ETX (24 bytes)

STX = 02h (1 byte).
WW = Week number '01'-'53'
VV = Weekday '01'-'07'
YYYY = Year '2003-2099'
MN = Month '01'-'12'
DD = Day '01'-'31'
HH = Hour '00'-'23'
MM = Minute '00'-'59'
SS = Second '00'-'59'
F = '0' Winter-time.
 = '1' Summer-time.
G = Offset to UTC for winter-time according to (1 byte):
 ',' (2Ch) -2 hours, '.' (2Eh) -1 hour, '0' (30h) 0 hour.
BCC = Checksum; Exclusive OR of bytes WW..F G in hexadecimal ascii format (2 bytes). Byte STX is NOT included!.
ETX = 03h (1 byte).

This message is sent out each second.
Protocol 16*

<table>
<thead>
<tr>
<th>Code</th>
<th>description</th>
<th>Hex value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC</td>
<td>Start Transmission Character</td>
<td>02</td>
</tr>
<tr>
<td>H</td>
<td>Ten UTC hours</td>
<td>30-32</td>
</tr>
<tr>
<td>H</td>
<td>Unit UTC hours</td>
<td>30-39</td>
</tr>
<tr>
<td>M</td>
<td>Ten UTC minutes</td>
<td>30-35</td>
</tr>
<tr>
<td>M</td>
<td>Unit UTC minutes</td>
<td>30-39</td>
</tr>
<tr>
<td>S</td>
<td>Ten UTC seconds</td>
<td>30-35</td>
</tr>
<tr>
<td>S</td>
<td>Unit UTC seconds</td>
<td>30-39</td>
</tr>
<tr>
<td>D</td>
<td>Ten date UTC</td>
<td>30-33</td>
</tr>
<tr>
<td>D</td>
<td>Unit date UTC</td>
<td>30-39</td>
</tr>
<tr>
<td>MO</td>
<td>Ten month UTC</td>
<td>30-31</td>
</tr>
<tr>
<td>MO</td>
<td>Unit month UTC</td>
<td>30-39</td>
</tr>
<tr>
<td>Y</td>
<td>Ten year UTC</td>
<td>30-39</td>
</tr>
<tr>
<td>Y</td>
<td>Unit year UTC</td>
<td>30-39</td>
</tr>
<tr>
<td>HL</td>
<td>Ten LT hours</td>
<td>30-32</td>
</tr>
<tr>
<td>HL</td>
<td>Unit LT hours</td>
<td>30-39</td>
</tr>
<tr>
<td>ML</td>
<td>Ten LT minutes</td>
<td>30-35</td>
</tr>
<tr>
<td>ML</td>
<td>Unit LT minutes</td>
<td>30-39</td>
</tr>
<tr>
<td>ECT</td>
<td>End transmission character</td>
<td>03</td>
</tr>
</tbody>
</table>

* Protocol 16M = Message transmitted each minute.
* Protocol 16S = Message transmitted each second.
Setup special pulse

Relay output no. 2 can be dedicated to send out a special pulse. When this function is enabled the relay is activated every day for 5 seconds at 02.00 UTC.

Use the procedure below to enable the special pulse.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON 26 SEP 2016</td>
<td>U10:11:35</td>
<td>Select function using ↓.</td>
</tr>
<tr>
<td>SPEC.-FUNCTIONS</td>
<td></td>
<td>Accept with YES.</td>
</tr>
<tr>
<td>SPEC.-FUNCTIONS</td>
<td></td>
<td>Press NO until wished function is shown.</td>
</tr>
<tr>
<td>SPEC.-FUNCTIONS</td>
<td>SETUP</td>
<td>Accept with YES.</td>
</tr>
<tr>
<td>SETUP</td>
<td>SPECIAL PULSE</td>
<td>Press NO until wished input/output is shown.</td>
</tr>
<tr>
<td>SPECIAL PULSE</td>
<td>NO</td>
<td>Accept with YES.</td>
</tr>
<tr>
<td>SPECIAL PULSE</td>
<td>YES</td>
<td>Change to using ↑↓.</td>
</tr>
<tr>
<td>SETUP</td>
<td>SPECIAL PULSE</td>
<td>Accept with YES.</td>
</tr>
<tr>
<td>SETUP</td>
<td>SPECIAL PULSE</td>
<td>Return to running mode press ←.</td>
</tr>
<tr>
<td>SPEC.-FUNCTIONS</td>
<td>SETUP</td>
<td>←</td>
</tr>
<tr>
<td>SPEC.-FUNCTIONS</td>
<td>←</td>
<td></td>
</tr>
<tr>
<td>MON 26 SEP 2016</td>
<td>U10:11:35</td>
<td></td>
</tr>
</tbody>
</table>
Setup NMEA LT

This function is valid only if the Master Clock is synchronised from an external NMEA source. Special function sync. source must be set to NMEA RS485 or NMEA RS232.

With this function it can be selected if the Master Clock should use the Local Time (LT) information included in the NMEA time message. The Master Clocks LT will be set to the nearest time with respect to the default value entered in the special function DEFAULT LT ADJ.

Example:

DEFAULT LT ADJ is set to 20 minutes. Local Time is 15:30.

1. Received LT is changed 5 minutes to 15:35, which is closer to 15:30 than 15:50; Master Clock LT will stay on 15:30.
2. Received LT is changed 10 minutes to 15:40, which is in the middle of 15:30 and 15:50; Master Clock LT will stay on 15:30.
3. Received LT is changed 15 minutes to 15:45, which is closer to 15:50 than 15:30; Master Clock LT will change 20 minutes to 15:50.

Default setting is NO, which means that the Local Time information is not used.

Use the procedure below to change the setting.

<table>
<thead>
<tr>
<th>MON 26 SEP 2016</th>
<th>SPEC.-FUNCTIONS</th>
<th>SPEC.-FUNCTIONS</th>
<th>SETUP</th>
<th>NMEA LT</th>
<th>NO</th>
<th>?</th>
<th>NMEA LT</th>
<th>YES</th>
<th>?</th>
<th>SETUP</th>
<th>NMEA LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U10:11:35</td>
<td>Select function using ↓.</td>
<td>Accept with YES.</td>
<td>Press NO until wished function is shown.</td>
<td>Accept with YES.</td>
<td>Press NO until wished input/output is shown.</td>
<td>Accept with YES</td>
<td>Change to using ↑↓.</td>
<td>Accept with YES</td>
<td>Return to running mode press ←.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software version

This function shows the software version for the Time Base module.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC.-FUNCTIONS</td>
<td>Accept with YES. Press NO until wished function is shown.</td>
</tr>
<tr>
<td>SPEC.-FUNCTIONS</td>
<td>Accept with YES.</td>
</tr>
<tr>
<td>SOFTWARE VERSION</td>
<td>The software version is MMC-A127. 11m = Uptime for this Master Clock.</td>
</tr>
</tbody>
</table>
Default LT adjust

This function is used to enter the default value used when pressing button ADV or REV.

Example:
Change default LT adj. from 60 minutes to 20 minutes.

- Select function using ↓.
- Accept with YES.
- Press NO until wished function is shown.
- Accept with YES.
- Change to using ↑↓.
- Accept with YES.
- Return to running mode press ←.
-←
Display format

With this function the display format in running mode can be selected.

The following three formats can be selected:

<table>
<thead>
<tr>
<th>Format 1</th>
<th>Format 2 (Default)</th>
<th>Format 3, Used for test / fault finding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT = Local Time.</td>
<td>L = Local Time</td>
<td></td>
</tr>
<tr>
<td>UTC = Universal Time Coordinated.</td>
<td>U = UTC</td>
<td></td>
</tr>
</tbody>
</table>

Example:

MON 26 SEP 2016
10:11:00 LT

Select function using ↓ .

Accept with YES.

Press NO until wished function is shown.

Accept with YES.

Select, by using the arrows, the wished display format.

Accept with YES.

Return to running mode press ← .
Programming form

<table>
<thead>
<tr>
<th>Function</th>
<th>Group</th>
<th>Output no.</th>
<th>Type of signal</th>
<th>Day/Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fault tracing

The display is blank

A. The green LED “POWER” is light?
 A1. No.
 A1A. Check the supply voltage.
 A1B. Power supply wires connected correctly?
 A2. Yes.
 A2A. Restart the master clock by switching the supply voltage off and on.

After starting up the master clock, no impulses appear (to correct the slave clocks).

B1. The master clock awaits the time shown by the slave clocks. Impulses will be distributed when correct time = the time shown by the slave clocks.

Relay outputs are programmed but nothing happens.

C1. The switch on the front panel is in position 0. Correct position is A.

C2. Check that the output is working when the switch is in position 1.

C3. Different program types have different priority. E.g. a programmed date program overrides a signal point in a week program.
 Priority order (1=highest, 3=lowest):
 1) Date program 2) Group 3) Week program

Alarm messages

D1. “Short circuit”

 Excessive load on the impulse output. Check the slave clock wiring. Impulses are stored (memorised) during the alarm. When the fault is fixed, all the stored impulses are distributed by rapid impulsioning.

D2. “Memory full”

 The master clock is out of memory, probably due to incorrect programming. Use week program for repetitive signals or group for a certain period. See the programming instructions in this manual.
D3. “Exists”

The signal point is already programmed.

D4. “Not programmed”

When trying to change a non-existing signal point.

Alarm output

The Master Clock is equipped with two separate alarm relays. One relay for general alarm and one for power failure alarm. See alarm list on page 16 for details.

<table>
<thead>
<tr>
<th></th>
<th>1 - 2</th>
<th>1 - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode, no alarm</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>Overload/short circuit alarm</td>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>Synchronisation alarm</td>
<td>Closed</td>
<td>Open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>8 - 9</th>
<th>8 - 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode, no alarm</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>Power failure alarm</td>
<td>Closed</td>
<td>Open</td>
</tr>
</tbody>
</table>

General alarm relay

Power alarm relay
WIRED DCF

TIME CODE-CLOCK

Max. 400 mm in diameter
for Time zone adjustment

TECHNICAL MANUAL
General

Westerstrand analogue clock for wired DCF Time-Code from Marine Master Clock provides the possibility to create a time distribution system, with high accuracy and high reliability.

The clock is intended for connection to a 2-wire bus which combines power supply and serial Time-Code. A built in microprocessor receives the Time Code, reads the position of the hands, and sets the clock to correct time. The Time-Code, built up according to the DCF-format, contains information about year, month, day hour and minute. At each minute shift seconds are synchronised as well. The transmission speed is 1 bit/second. 24VDC power supply for the built in electronics is combined with the Time-Code.

The clock is intended for time zone adjustment from a Marine master clock.

Installation

Connect Time code to time code input, connection movement.

The hands will step forward to 12 position and wait there for correct time message.

The speed is approx. 1 step/sec. When an accepted Time message the hands will step forward to correct time.

If the Marine master clock sends out a special time message (Time zone adjustment), the hands will step forward rapidly to correct time.

The speed of the hands is 10 steps/sec.

Synchronisation

When the clock has received and accepted a correct time code message, the hands will step forward rapidly. If the Marine master clock sends out a special time message (Time zone adjustment), the hands will step forward rapidly to correct time. The speed of hands is 10 steps/sec.

Automatic feedback control of the hands at 12:00 and 00:00.

If the time code would disappear, the clock continues by means of the built-in quartz crystal.

During a power failure, the clock is temporarily stopped. After the restoration of power the hands steps forward to the 12.00-position and waits, for a Time-Code to be received.
Technical data

<table>
<thead>
<tr>
<th>Art.no</th>
<th>113160-20,113160-22,113163-20,113163-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>2-wire</td>
</tr>
<tr>
<td>Connection voltage</td>
<td>24VDC combined with serial Time-Code</td>
</tr>
<tr>
<td>Type of time code</td>
<td>DCF-format with Time zone adjustment.</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>PIC16F628</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20°C to +50°C</td>
</tr>
<tr>
<td>Power consumption</td>
<td>20 mA. (113160-20,113160-22)</td>
</tr>
<tr>
<td></td>
<td>30 mA. (113163-20,113163-22)</td>
</tr>
</tbody>
</table>
Option

Ethernet

Marine Master Clock
List of contents

List of contents ... 2
General .. 3
 Link indicator .. 3
Technical data .. 3
Configuration ... 4
 Status IP .. 5
Work mode (NTP Server or Client) ... 5
WEB browser ... 6
 Login window ... 6
 Status >> ... 7
 General >> .. 8
 Network >> ... 9
 DHCP .. 9
 IP .. 9
 Gateway .. 9
 Subnetmask ... 9
 DNS ... 9
 SNMP ... 9
 SNMP server ... 9
NTP >> ... 10
 NTP mode ... 10
 Broadcast/Multicast Server + Interval(s). 10
 NTP server 1..5 ... 10
 Interval(s) .. 10
 Max. correction (s) .. 10
Help >> .. 11
 Technical remark .. 11
General

The Ethernet module makes it possible to connect a Master Clock to a LAN (Ethernet Local Area Network). The module can be built into a Marine Master Clock.

The module can be used for Master Clock remote control, programming of relay outputs, alarm distribution, supervision and for distribution of correct time. The module can be configured to work as a NTP server or NTP client.

For transmission of correct and accurate time the NTP (Network Time Protocol) is used. NTP is a part of the protocol family UDP/IP.

When using the Ethernet module for time distribution the Master Clock can act as a NTP primary server or as a NTP client.

Units connected to the LAN, supporting NTP, can receive correct time from the Master Clock via the network module.

Included with the Ethernet module is NyToP, Westerstrand NTP-client for Windows 98/NT/2000/XP/Vista. For remote control and relay programming the windows based application software QW3Control can be used. The QW3Control is an option.

To configure the different parameters such as IP-address, work mode etc. a normal WEB-browser is used.

Link indicator

The front panel of the Marine Master Clock has a Link indicator LED.

LED ON = Link activated. The Master Clocks is connected to a network.

LED OFF = No link activated. The Master Clock is not connected to a network.

Technical data

<table>
<thead>
<tr>
<th>Art. no.:</th>
<th>123384-00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported protocols:</td>
<td>NTP version 1, 2 and 3, RFC1305 (For time distribution) SNTP, RFC 1769 Other supported protocols: FTP (RFC 959) HTTP Transport protocol: TCP/IP</td>
</tr>
<tr>
<td>IP-address assignment: Dynamic, using DHCP, or fixed IP-address</td>
<td></td>
</tr>
<tr>
<td>Compatibility: Ethernet version 2/IEEE 802.3 Supports 100BASE-T (RJ45) connections</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature: -20°C up to +55°C</td>
<td></td>
</tr>
<tr>
<td>Device Management: Web-Based (requires web browser)</td>
<td></td>
</tr>
<tr>
<td>NTP client software: NyToP, freeware, manual 1672</td>
<td></td>
</tr>
<tr>
<td>Application software: QW3Control art. no. 123396-00, manual 1739</td>
<td></td>
</tr>
</tbody>
</table>
Configuration

Most of the configuration parameters are set via an external PC by using a Web-browser, but some of the settings can also be done from the Master Clock.

The following parameters can be set from the Master Clock by using the special function setup.
- IP address

The following parameters can be viewed from the Master Clock by using the special function status.
- IP address

Example:
Give the module IP-address 192.168.1.66

```
MON 14 OCT 2007 09:07:00 LTw

Select function by using ↓.

Accept using YES.
Press NO until wished function is displayed.

Accept using YES.

Press NO until the text IP is displayed.
Accept using YES.

Set, by using the arrows, the IP-address 192.168.001.066.
Accept using YES.

Return to running mode by using ←.

←
←

MON 14 OCT 2007 09:07:00 LTw
```
Status IP

Work mode
S = Server. The Master Clock works as a NTP time server.
C = Client. The Master Clock works as a NTP time client.

Link indicator
L = Link activated. The Master Clocks is connected to a network.
= No link activated. The Master Clock is not connected to a network.

Activity indicator A = Showing the network traffic from / to the Master Clock.

Work mode (NTP Server or Client)
The network module can work in two different modes
Server:
The Master Clock works as a NTP time server answering to NTP requests from NTP clients.

Client/Server:
The Master Clock is both NTP client and NTP server.
The work mode is set from the Master Clock, SPEC.-FUNKTIONS / SETUP / SYNC.SOURCE.

SYNC.SOURCE = NTP CLIENT
The Master Clock acts as a NTP-client receiving its time from an external NTP server.

SYNC.SOURCE = NMEA, GPS, etc.;
The Master Clock acts as a NTP server providing connected external clients with correct time.
WEB browser

Login window
The Web interface requires a password. Always use user name admin and a valid password. Default password is password.

After login a function list is displayed:
Status >>

Displays the Master Clock status. The status is automatically updated every 10th second.

Marine Master Clock

IP=192.168.3.11
MAC=00-90-C2-D4-0F-F1

NTP mode=Client+Server
UTC offset=0 minutes
UTC=2008-02-18 10:26:51.663
LT=2008-02-18 10:26:51.663 Mon (Winter)
Sync=7 (<=4 Not synched., >=5 synched.)
Number of time settings=15

Uptime=874 seconds
Firmware=HUR-M109 (Feb 18 2008 10:49:26)
General >>

To set general parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbolic name, maximum 48 characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Station Master Clock</td>
</tr>
</tbody>
</table>

| Password | Enter a new password. The password has to be repeated. |

| Firmware | Function to enable firmware download. |

| Save | Save parameters. |
Network >>
Used to set the network parameters.

DHCP
With this function it is defined if the Ethernet modules should receive its IP-address automatically from a DHCP server or use the static IP-address.

IP
This function is used to give the Ethernet module a static IP-address.

Gateway
This function is used to enter a gateway IP-address.

Subnetmask
This function is used to enter a subnetmask.

DNS
This function is used to enter a name server IP-address.

SNMP
With this code the SNMP functionality can be disabled/enabled.

SNMP server
This function is used to enter the IP-address of the SNMP server.
NTP >>

Used to set the NTP parameters.

NTP Setting

<table>
<thead>
<tr>
<th>NTP mode</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast/Multicast Server</td>
<td>Broadcast</td>
</tr>
<tr>
<td>Timebase</td>
<td>UTC/Local</td>
</tr>
<tr>
<td>NTP server 1</td>
<td>192.168.14.99</td>
</tr>
<tr>
<td>NTP server 2</td>
<td></td>
</tr>
<tr>
<td>NTP server 3</td>
<td></td>
</tr>
<tr>
<td>NTP server 4</td>
<td></td>
</tr>
<tr>
<td>NTP server 5</td>
<td></td>
</tr>
<tr>
<td>Interval(s)</td>
<td>0</td>
</tr>
<tr>
<td>Max. correction(s)</td>
<td>0</td>
</tr>
</tbody>
</table>

NTP mode

NTP mode is set from the Master Clock keyboard, special function SETUP/SYNC SOURCE. See page 5.

Server: The Ethernet module answers time request from clients.

Client/Server: The Ethernet module acts as both a NTP client and a NTP server.

Broadcast/Multicast Server + Interval(s)

- **---** No periodic transmission of time. A client will ask for time.
- **Broadcast** Transmit time periodic to IP=255.255.255.255
- **Multicast** Transmit time periodic to IP=224.0.1.1

Client NTP clock

With periodic transmission client network clocks will show a new time quicker. Make sure the client clock has enabled broadcast/multicast, e.g. **NTP mode = Broadcast/Multicast**. Also **Country/Timezone = Local Time** must be selected in the client clock.

Timebase

With this function the **type of time** transmitted in the NTP message is chosen. Default=UTC.

NTP server 1..5

This function is used if the Time Central is receiving time from an external NTP Server and NTP mode Client/Server. The value entered can be either an IP-address or a name if the DNS server (name server) functionality is used. Server ip address is then the address of the external NTP Server.

Interval(s)

NTP client poll interval in seconds
This function is used if work NTP Client/Server is selected.

Max. correction (s)

This function is used if the Ethernet module is configured as an NTP client
Enter max. correction in seconds. The time is compared with current time in the Time Central. If 0 is chosen, then no check of the time is done.
Technical remark

When option Ethernet is mounted and synchronisation source NMEA RS485 is selected the RS485 output can only be used for transmission of NMEA ZDA time string with fixed baudrate (4800) and data format (8N1).
Technical specification Marine Master clock

General
The master clock has 6 buttons and one (2 line x 16 character) LCD. To facilitate time zone change there are 2 separate buttons for this purpose. The master clock also has a dimmer to adjust background illumination.

Technical data
Crystal frequency: 4,915200 MHz.
Accuracy: 0,1 sek./24 hours (+20°C).
Microprocessor: HD6412394.
Time memory: 30 days (Back-up with Super Capacitor)
Ambient temperature: 0°C to +50°C.
Relative humidity: Max. 85% non-condensing.
Case: 19” case according to drawing 085811-00.
IP rating: IP20
Weight: 5.0 kg.
CE-approval, EMC Emission according to EN61000-6-3, Immunity according to EN61000-6-2.
Outputs for slave movements *:

Control clocks: Analogue display, with background illumination.

Output 1:
- Impulse system: 1/1 minute, 1/2 minute, second, 1/2 second, time code (TC)
- Type of time: LT, UTC
- Impulse length: Minute 0.1-9.9 sec.
 Second 0.1-1 sec.

Output 2:
- Impulse system: 1/1 minute, 1/2 minute, second, 1/2 second, time code (TC)
- Type of time: LT, UTC
- Impulse length: Minute 0.1-9.9 sec.
 Second 0.1-1 sec.

Output 3:
- Impulse system: 1/1 minute, 1/2 minute, second, 1/2 second, time code (TC)
- Type of time: LT, UTC
- Impulse length: Minute 0.1-9.9 sec.
 Second 0.1-1 sec.

Output 4:
- Impulse system: 2-wire, 1/1 minute, 1/2 minute, second, 1/2 second, time code (TC).
 3-wire for forward/forward/back. 1/1-minute alt. 1/2-minute.
- Type of time: LT, UTC
- Impulse length: Minute 0.1-9.9 sec.
 Second 0.1-1 sec.

Max. load/output: 2A
Total load all outputs together: 2.5A

The outputs have short circuit protection that is restored automatically.

*Analogue intelligent slave clocks connected to time code output receive the time code and steps to correct time by rapid impulses. The rapid impulses have a speed of approx. 10 steps/second. To step forward 11 hours takes approx. 1 minute and 10 seconds.
Relay outputs
Number of outputs: 2 Changeover potential-free contacts.
Max load/relay output: 230 V 6A.
Program memory: 100 year (EEPROM).
Signal points: 800

Special pulse output
Relay output no. 2 can be dedicated to send out a special pulse.
When this function is enabled the relay is activated every day for 5 seconds at 02.00 UTC.

Telegraph Logger Clock signal
If one of the impulse outputs is configured to work as telegraph logger clock signal (1/2M-12B), then relay output no. 2 is used to send out a Counter C.W. signal and can not be used for other purposes.

Alarm output
Number of outputs: 2 Changeover potential-free contacts.
Type of alarms
Output no. 1 (general alarm): Overload / short circuit, synchronisation alarm
Output no. 2 (power alarm): Power failure alarm
Serial ports
The Master Clock is equipped with two serial ports, one RS232 and one RS422/485. Both ports can be used either as input or output for serial time messages.
If programmed as output the port can be used to send out time to external equipment such as computers etc. If programmed as input the port can be used to synchronise the master clock with an external time source provided with RS232 or RS485 output. The purpose of this is to achieve higher accuracy.

Protocol, data format and baud rate is selectable for respective serial port.

Serial output
Baud rate (selectable): 300, 600, 1200, 2400, 4800, 9600, 19200 baud.
Data format (selectable) 7N1, 7N2, 7O1, 7O2, 7E1, 7E2, 8N1, 8N2, 8O1, 8O2, 8E1, 8E2
No. of data bits: 7 or 8.
Type of parity: None, odd or even.
No. of stop bits: 1 or 2.
Selectable data format:
Available protocols - ZDA Time string, NMEA 0183
- Westerstrand protocol no. 2, 3, 5, 7 etc.
(Automatic time message protocols)
Type of time (selectable): UTC, LT

Serial input
Baud rate: 4800 baud.
Data format: 8N1
Type of protocol: ZDA Time string, NMEA 0183
Power supply

The master clock has two inputs for power supply, one for AC, and one for 24V DC. As standard the DC-input is a direct connected input without galvanic isolation and no compensation for low input voltage. With option DC/DC the DC-input will be galvanic isolated and low / high input voltage is compensated automatically.

Supply voltage: 90 - 264V 50/60 Hz and 24VDC.
Option DC/DC:
 (Galvanic isolated)
 Input voltage: 19 - 36VDC
 Output voltage: 23 – 30VDC (adjustable)
 Isolation voltage: 1500V

Power consumption
AC: 65W
DC: 50W

Options
DC/DC -converter
Ethernet LAN connection
GPS-receiver
Table model
Software for time to computer, WINT

Ethernet LAN (option)
Protocol: NTP according to RFC1305 and RFC1361, TCP/IP
Compatibility: Ethernet version 2/IEEE 802.3
Ethernet: Connection 100BASE-T (RJ45)
Calculation of Cable Area in Time Systems

General
To make a time system with impulse operated analog and digital slave clocks that performs satisfactorily, the cable from the Master Clock to the Slave Clocks needs to be dimensioned correctly.
A 10% voltage drop is allowed in the cable.
The length and area of the cable and the current (load) on the cable affect the voltage drop.

Formula
\[A = l \times I \times k \]
\[A = \text{Area} \ [\text{mm}^2] \]
\[l = \text{cable length} \ [\text{m}] \]
\[I = \text{current} \ [\text{A}] \]
\[k = 0.015 \ [\text{constant}] \]

Power Consumption

Impulse Slave Clocks
Analog clocks minute ≤ 400 mm: 7.5 mA
Analog clocks minute ≤ 900 mm: 15 mA
Analog clocks minute + sweep seconds hand ≤ 400 mm: 25 mA
Analog clocks minute 3-wire F/R ≤ 400 mm: 10 mA
Digital Clocks: 5 mA

Time-Code (TC) Slave Clocks
Analog clocks minute ≤ 400 mm: 14 mA (version with movement 113160-00)
Analog clocks minute ≤ 400 mm: 7 mA (version with movement 21634-00)
Analog clocks minute ≤ 900 mm: 20 mA
Analog clocks minute + sweep seconds hand ≤ 400 mm, indoor: 12 mA
Analog clocks minute + sweep seconds hand ≤ 400 mm, outdoor: 20 mA
Analog clocks minute + sweep seconds hand ≤ 900 mm: 27 mA

Time-Code Marine (TCM) Slave Clocks
Analog clocks minute ≤ 400 mm: 20 mA
Analog clocks minute ≤ 900 mm: 20 mA
Analog clocks minute + sweep seconds hand ≤ 400 mm, outdoor: 27 mA
Analog clocks minute + sweep seconds hand ≤ 900 mm: 27 mA

Example
A time system consists of 40 analog clocks with a diameter of 300 mm.
The power consumption will then be 40 x 7.5 = 300 mA = 0.3A
Cable length is 100 meters.
\[A = 100 \times 0.3 \times 0.015 = 0.45 \text{ mm}^2 \]
Choose a cable with an area of at least 0.45 mm².